
Algorithmic Aspects of Access Networks Design in
B3G/4G Cellular Networks

David Amzallag∗, Joseph (Seffi) Naor†, Danny Raz∗

∗Computer Science Department
Technion, Haifa 32000, Israel

{amzallag,danny}@cs.technion.ac.il
†Microsoft Research

One Microsoft Way, Redmond, WA 98052
naor@cs.technion.ac.il

Abstract— The forthcoming 4G cellular systems will provide
broadband wireless access to a variety of advanced data and
voice services. In order to do that, these networks will have a
significantly larger number of base stations and a much higher
bandwidth demand from their radio access networks. This will
motivate operators to replace the commonly used star based
architecture, in which an RNC is connected to a set of base
stations via direct links, with a more complex tree structure, in
which a base station can be connected to an RNC via other base
stations.

In this paper we address algorithmic aspects of this challenging
design problem, in which tree-topology is used to connect base
stations and RNCs. We formulate the problem as an optimization
problem and prove that it is NP-hard to approximate it in the gen-
eral case. For the metric case, however, we develop an O(log n)-
approximation algorithm. We then study the performance of this
algorithm and several other heuristics in practical scenarios. Our
results indicate that a combination of a certain greedy heuristic
and the proven approximation algorithm, generates a solution
that produces close to optimal results in practical scenarios and
can be efficiently computed for sufficiently large network sizes.

I. INTRODUCTION

The forthcoming 4G cellular networks are expected to
provide a wide variety of new services, from high-quality voice
and high-definition video to high-data-rate wireless channels.
Although the detailed structure of 4G systems is as of yet
not well defined, there is a clear consensus regarding some of
the important aspects of the technologies to be implemented in
these systems1. Assuming that video and data communications
will be the main applications, 4G systems are planned to
provide even higher transmission rates and larger capacity (i.e.,
both in term of the number of users and the traffic volume)
than current 3G (IMT-2000 based) systems. Most likely, 4G
systems will be designed to offer bit rates of 100 Mbit/s
(peak rate in mobile environment) to 1 Gbit/s (fixed indoors)
with a 5 MHz frequency bandwidth. The system capacity is
expected to be at least 10 times larger than the current 3G
system. In addition, these objectives should be met together

† On leave from the Computer Science Department, Technion, Haifa 32000,
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1See International Telecommunication Union (ITU) Web Site at
http://www.itu.int/home/index.html.

with a drastic reduction in the cost (1/10 to 1/100 per bit) [1].
Such high frequencies yield a very strong signal degradation
and suffer from significant diffraction resulting from small
obstacles, hence forcing the reduction of cell size (in order to
decrease the amount of degradation and to increase the degree
of coverage), resulting in a significantly larger number of cells
compared to previous generations.

Third generation network elements are functionally grouped
into the Radio Access Network (RAN, or UTRAN, in UMTS
systems) that handles all radio-related functionality; Core
Network (CN), which is responsible for switching and routing
calls and data connections to external networks, and the User
Equipment (UE) that uses air interface to communicate with
the base stations (see [2, Chapter 5]).

RAN architecture in current 3G systems consists of one
or more Radio Network Subsystems (RNSs) as depicted in
Figure 1. Each RNS is a sub-network within the RAN,
comprising of one Radio Network Controller (RNC) and one
or more base stations (BSs)2. The RNC owns and controls
radio resources in its RNS; it is the service access point for
all services provided by the RAN to the CN over the lu
interface. It then communicated with the BSs in its RNS (over
the lub interface) which are in charge of the communication

2Note that the equivalent 3GPP term for a base station is Node B, where
RNC is the 3GPP2 terminology for the GSM Base Station Controller (BSC).
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Fig. 2. Tree-topology access network (RNCs nodes are colored in black
while base-stations are whites)

to the UE over the WCDMA radio interface. RNCs may
be connected to each other via an Iur interface (i.e., the
open interface that allows soft handover between RNCs from
different manufactures).

RAN in 4G systems is expected to be considerably different
from current RANs. First, as mentioned before, in 4G systems
the cell size is expected to be smaller than in 3G systems [3].
Therefore, the 4G RAN will contain more base stations. A
careful design must be used in order to handle this large
number of base stations without a significant increase in the
number of RNCs (i.e., RNC dimensioning). Second, the larger
number of base stations (resulting in more frequent handover
in the system) and the expected higher bit rate will result in a
heavier load on the links between the RNCs and base stations.
Finally, these changes should be made in a cost-efficient way.

In the current traditional star topology radio access networks
(e.g., in UMTS systems), all base stations are directly con-
nected to RNCs. When a tree topology is deployed (rather than
a star), a base station is allowed to be connected to another
base station rather than its RNC. However, base stations have
no routing capabilities and they simply forward all received
data towards their corresponding RNC and from the RNC to
the corresponding base station. For example, in Figure 2, if
a mobile user inside the coverage area of base station B1

wishes to communicate with a mobile user inside the coverage
area of base station B2, their data traffic will be sent through
RNC R. Therefore, the link connecting the parent of B1 and
B2 to its parent, on the way to the RNC, must be capable
of carrying large enough amount of traffic to handle both its
own traffic as well as the traffic originating from its three
children. Thus, the “heaviest” links are designed to be those
that are connected directly to the RNC. These links must be
able to handle all the traffic in their subtree. In the case of
tree topologies, the constraints stem from technical limitations
of the equipment. A base station cannot be connected to
too many other base stations without creating a significant
traffic reduction. Therefore, we assume that every base station
and every RNC can only have a limited number of allowed
connections. The planning problem is then to design the best
possible tree taking these limitations as well as the cost of

establishing the links into account. As we show in this paper,
this is a computationally difficult task.

In this paper we rigourously study the problem of designing
tree-topology based access networks for 4G cellular systems,
and describe the theoretical as well as the practical aspects of
the solutions to this problem.

A. Definitions and background

Consider a set I = {1, 2, . . . , n} of base stations and a
set J = {1, 2, . . . ,m} of RNCs. A symmetric connection
cost w(i1, i2) is associated with every pair of base stations
i1 and i2; Another given cost is w(i, j) representing the cost
of connecting base station i to RNC j, for every i ∈ I, j ∈ J .
A tree-topology based access network is designed as a forest,
such that each of its trees is rooted at an RNC node and
contains the base stations that are under the responsibility of
this RNC. In addition, every node u ∈ I ∪ J is allowed to
connect to no more than b(u) neighbors in the forest, for some
b(u) ≥ 1.

Given a spanning tree T of a subset IT ⊆ I of base stations,
rooted at RNC r, we define the routing cost, dT (r, i), between
the RNC r and a base station i ∈ IT , as the sum of the
costs along the unique path between them in the tree T . The
routing cost of the tree itself is defined by

∑
i∈IT

dT (r, i).
Our goal is to design a tree-topology based access network
with a minimum total cost. Note that the closer a connection
is to the root of the tree, the higher is its contribution to the
routing cost of the tree.

An important observation is that the problem of designing
access networks that comprise of multiple trees (i.e., multiple
RNS radio access network) is reducible to the problem of
designing a network comprising of a single tree (i.e., a single
RNS). This means that the problem of dividing base stations
among the possible RNCs is directly-solvable via our model.
We represent the input to the problem as a complete graph
G = (V,E), such that V = I∪J ∪{r̂}, where r̂ is a “special”
vertex to be defined later. There is an edge between every pair
of vertices in I weighted by their corresponding connection
cost. In addition, each RNC vertex in J is connected to all
the vertices in I by an edge of weight equal to the connection
cost between the corresponding base station and the RNC.
Finally, the vertex r̂ is connected to all the vertices of J by
an edge of zero weight. All other edges of G are assumed to
have an infinite weight. The degree constraints of vertices of
I ∪ J are equal to the corresponding degree constraints given
for base stations and RNCs. The degree constraint of r̂, b(r̂),
is defined to be |J | = m. Hence, our access network design
consists not only of the association of base stations to RNCs,
but also of selecting a subset of RNCs to be deployed in the
network. A consequence of the above reduction is that the
problem of finding a forest with multiple RNCs is equivalent
to the problem of finding a tree for a single RNC. We will
therefore limit our attention to the case where |J | = 1.

Notice that when setting, in the above reduction, the value
of b(r̂) to be k, k ≤ m, the model is extended to select only
k out of the m RNCs to be installed on the network.



We define the bounded-degree minimum routing cost span-
ning tree problem (BDRT) as the problem of finding a
minimum routing cost spanning tree, rooted at a given root r,
that meets the degree constraints b(v), for all v ∈ V .

Approximation algorithms and heuristics play a major role
in our paper. A γ-approximation algorithm is a polynomial-
time algorithm that always finds a feasible solution for which
the value of the objective function is within a proved factor
of γ of the optimal solution. Heuristics will be described
and analyzed in comparison with the worst-case behavior of
approximation algorithms, in order to design a good practical
solution to the access network design problem.

B. Our contribution

In this paper we study the algorithmic aspects of access
network design in 4G cellular systems. We investigate the
BDRT problem as a general model that captures several
aspects of radio access networks design.

We show that it is NP-hard to approximate the general prob-
lem (Section III), and then present an approximation algorithm
for the case where edge weights satisfy triangle inequality.
To the best of our knowledge this is the first approximation
algorithm for this problem. We show, in Section III-A, that
the case of b(v) ≥ 3, for every v ∈ V , is approximable
within a factor of O(log n). Four more heuristic algorithms
for BDRT are presented in Section III-B and compared to
the approximation algorithm. A generalization of BDRT is
described in Section IV. In this generalization the traffic
requirement of the base stations is also taken into account
in the cost model. In this way, the model can deal with
large variance in the traffic loads among the base stations,
as expected in 4G networks.

In Section V we describe our simulations. We study the
performance and the quality of the solutions of each of the
five studied algorithms on instances of both BDRT and its
generalization. Finally, we conclude that the combination of
the approximation algorithm and one of the heuristics achieves
a proven performance guarantee of O(log n) in the worst-case,
together with a close to optimum solutions in practice, both
for BDRT and its generalization.

II. RELATED WORK

Several non-star topologies for radio access networks have
been proposed in the last few years [3]–[9].

Ring topologies have been proposed in [3], [4], [5]. The
advantage of such a topology is, of course, its reliability; on
the other hand, the delay on the path from a base station to the
RNC may be significant. The authors of [3] present an O(n3)-
time algorithm for solving the corresponding design problem.
However, such an approach is unlikely to be optimal since
this problem, as modeled in [3], is the well-known traveling
salesman problem (TSP) which is NP-hard to approximate in
general. The algorithm presented in [3] is a “nearest neighbor”
algorithm that guarantees a solution that is within a factor of
O(log n) of the optimal solution of the problem [10, Chapter
3.2] only when the cost on the links satisfy triangle inequality.

Tree-topology radio access network design in UMTS cellu-
lar networks has been studied in [6]–[9]. The multiple-RNS
design problem is considered in [6], [7] and [8] deal with
the single-RNS version of the problem, and [9] proposes an
approach to solve both problems. Note that (as we indicated
earlier) both problems are algorithmically equivalent. Since all
these papers use the simulated annealing technique, the quality
of the solutions depends on the duration of the execution.

Fault-tolerance in access networks is considered in [7]
and [8]. In both papers the cost model is very similar to
the one adopted here, and the cost function can handle both
wired (e.g., leased-line, fiber, coax) and wireless (microwave)
interconnections. However, the constraints of the models used
in these papers are different from ours. It is assumed that each
base station specifies its level in the tree and a uniform out-
degree bound is used for all nodes.

Tree-topology-based design for access networks has also
been discussed in [9]. In this work the authors proposed a
Simulated Annealing based algorithms compared with a lower
bound for the single-tree version of the problem. Using this
Lagrangian relaxation-based lower bound, a branch-and-bound
method is proposed to compute the theoretical optimal solution
to this problem for networks of small sizes. The cost model
described in [9] has two important characterizations. The first
one is that the cost function also depends on the level in
which the base station is located in the tree. Secondly, its
objective function is defined as the sum of the connection
costs of the tree (rather than the sum of the cost of the paths
between the RNC and each of the base stations, as studied
in this paper). Since connections closer to the RNC aggregate
more traffic, the cost model should capture the flow of the
traffic throughout the tree and therefore the cost model of [9]
does not reflect this behavior of traffic. Moreover, optimal
solutions for these two different objectives can be far from
each other by a factor of Θ(n) (as in the case of unit-weight
complete graph on n vertices, all have a degree bound of
two). From an algorithmically point of view, if the objective
function is a minimization the total sum of connection costs,
the problem can be studied under the framework of the
well-known bounded-degree minimum spanning tree problem
(e.g., [11], [12], [13]).

Several problems can be viewed as a generalization of the
BDRT problem, where there are no limitations on the degree
bounds. The minimum routing cost spanning tree problem,
asks for a spanning tree where the sum of the routing cost
is taken over all pairs of nodes and not only from the root to
all other nodes.

Finding a spanning tree of minimum routing cost in general
weighted undirected graphs is NP-hard [14]. (Notice that the
“single-source” version of the problem without the degree
constraints is polynomial-time solvable and can be seen as
the single-source shortest path problem.) Wu et al. [15]
showed that finding a minimum routing cost tree in a general
weighted graph G is equivalent to solving the same problem
on a complete graph in which edge weights satisfy triangle
inequality. This result implies that the minimum routing cost



spanning tree problem in a metric space is also NP-hard. The
best result known today for this problem is a polynomial-time
approximation scheme (PTAS) due to Wu et al. [15]. In this
paper, the authors show that this problem has an (1 + ε)-
approximate solution in time O(n2� 2

ε �−2).
Hu [16] introduced a generalization of the minimum routing

cost spanning tree problem that he called optimum commu-
nication spanning trees. In this problem, in addition to the
weight on edges, a requirement value r(vi, vj) is specified for
every pair of vertices vi, vj . The communication cost between
a pair of vertices in a given spanning tree is the cost of the
path between them in the tree multiplied by their requirement
r(vi, vj). The communication cost of the tree is the sum
of all pairwise communication costs. Thus the routing cost
is a special case of the communication cost when all the
requirements are one.

Several O(log2 n)-approximation algorithms for the metric
case of the minimum communication cost spanning tree prob-
lem are presented in [15] and [17]. This problem is shown
to be MAX SNP-hard [17], implying that a PTAS can not be
achieved unless P = NP.

In Section IV we present an extension to our model which
uses similar flow requirements. This extension can be viewed
as a single source, bounded-degree version of the minimum
communication cost spanning tree problem.

III. THE BOUNDED-DEGREE MINIMUM ROUTING COST

SPANNING TREE PROBLEM

The important goal of efficient planning of access networks
is beyond our reach since this problem is NP-hard, as we
mentioned before. In this paper we use two approaches for
coping with hard optimization problem: approximation algo-
rithms and heuristics. Instead of finding an optimal solution,
an approximation algorithm settles for a near, yet provable,
optimal solution. Heuristic algorithms, on the other hand,
work well on many instances, though not necessarily on all
instances.

Unfortunately, it is not even possible to design polynomial-
time approximation algorithm for BDRT, unless P = NP. Such
γ(n)-approximation algorithm will solve the Hamiltonian path
problem, for any computable function γ(n). Given a graph G
on n vertices we can transform it to an instance G′ of BDRT
such that G has a Hamiltonian path connecting r and a vertex
v if and only if G′ has an optimal solution for BDRT of value
ξ(n) = 1+2+ . . .+(n−1) = 1

2n(n−1). This transformation
can be done by assigning a unit weight to the edges of G, and
a weight of γ(n)·ξ(n) to non-edges so as to obtain a complete
graph G′. Degree bounds for r and v are 1 and for all other
vertices in G′ degree bounds are taken to be two, and r is fixed
to be the root. We can now state the following theorem3.

Theorem 1: Unless P = NP, there is no polynomial-time
approximation algorithm for BDRT.

When considering planning of access networks in real-life
applications, the weights on edges in BDRT typically satisfy

3NP-hardness proofs are omitted for the lack of space.

Algorithm A′. BDRT-APPROXIMATION

1: Construct a shortest-path tree, with root r, on the input
complete (metric) graph; renumber the vertices so that vi,
i = 1, 2, . . . , n, is the ith closest vertex to the root.

2: Set v1 to be the root of the tree T ; i← 1.
3: while T is not a spanning tree do
4: Pick the ξ(vi) vertices of least indices and assign

them, from the left most child to the rightmost, as the
children of vertex vi, where ξ(vi) = b(vi), for i = 1,
and ξ(vi) = b(vi)− 1 otherwise.

5: i← i + 1
6: end while

triangle inequality. Notice that in order to obtain the above
inapproximability result we had to use very large edge weights
that indeed violate triangle inequality. If we restrict ourselves
to metric instances of BDRT in which edge weights satisfy
triangle inequality, the problem remains NP-hard (even for
b(v) ≥ 3, for all v ∈ V ), but as we shall see, it is no longer
impossible to approximate the optimal solution.

Theorem 2: The metric BDRT with b = b(v) ≥ 3, for
every v ∈ V , is NP-hard.

A. An O(log n)-approximation algorithm

Next we present an O(log n)-approximation algorithm for
the metric version of BDRT, where the degree constraints
for all vertices are assumed to be greater than or equal to 3.
The lower bound we use is the cost of the shortest-path tree,
rooted at r, of the input graph G. Nevertheless, the total cost
of a shortest-path tree is not unique, in general. Graphs can
have several shortest-path trees (rooted at the same vertex) of
different costs yet each preserves the shortest-distance between
the root and each of the vertices. However, when edge weights
satisfy triangle inequality, the shortest-path tree is unique,
drawn as a star centered at the root vertex. Obviously, this
solution is a lower bound for any instance of BDRT, since
every edge of this star is counted only once in the total cost.

Our approximation algorithm, called Algorithm A′, has two
phases. First, the shortest-path tree, rooted at r, is constructed,
and the vertices are renumbered by their distance from the root
on the shortest-path tree (v1 is the root itself, v2 is the closest
vertex to the root on the input graph, v3 is the second closest
vertex, and so on).

In the second phase, the output tree is constructed meeting
the degree constraints of all vertices. The algorithm starts at the
root vertex r, picks the b(r) vertices of least index and assigns
them as its children, from the left most child to the rightmost
one. Moving to the next level in the constructed tree, for every
vertex v, the algorithm picks the b(v) − 1 unpicked vertices
of least index and assigns them as its children, from the left
most child to the rightmost one. This process is terminated
when the tree contains all the vertices of G.

Before bounding the cost of the tree constructed by Algo-
rithm A′, let us consider a concrete example. Let b(v) = 3
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Fig. 3. Approximating BDRT

for every vertex v of G, meaning that the output tree is of the
largest height, h. Since there is one vertex in the 0th level of
this tree, three vertices in the first level, 3 · 2 vertices in the
second level, and 3 ·2�−1 vertices in the �th-level, the height h
is �log n+2

3 � ≤ log n. Now, consider for example, vertex v12

in Figure 3, and let us bound its contribution to the total cost
of the solution.

d(v12) = w(v1, v2) + w(v2, v5) + w(v5, v12)
≤ w(v1, v2) +

(
w(v1, v2) + w(v1, v5)

)
(1)

+
(
w(v1, v5) + w(v1, v12)

)

≤ w(v1, v12) + 2
(
w(v1, v2) + w(v1, v5)

)

≤ w(v1, v12) + 2 log n · w(v1, v6) (2)

Using triangle inequality we can bound this contribution
by (1). Finally, since v6 is the last internal vertex in the tree
(colored in grey in Figure 3), w(v1, v6) ≥ w(v1, vj) for every
j ≤ 6, hence the heaviest path connecting the root to any
vertex has cost at most 2 log n · w(v1, v6) (by (2)).

Theorem 3: Algorithm A′ is an O(log n)-approximation
algorithm for the metric BDRT with b(v) ≥ 3, for every
v ∈ V .

Proof: Let T be the tree constructed by the algorithm,
and let vk be the last internal vertex of T , that is, vertices
vk+1, . . . , vn are all leaves. Recall that the routing cost, d(vi),
of any vertex vi is the sum of the weights along the unique path
to the root v1. In general, the routing cost can be computed
as followed

d(vi) =
�log i�−1∑

j=0

w(v� i

2j+1 �, v� i

2j �) (3)

≤ w(v1, vi) + 2
�log i�−1∑

j=0

w(v1, v2j ) (4)

≤ w(v1, vi) + 2 log n · w(v1, vk), (5)

where (4) is the result of triangle-inequality, (5) follows
since w(v1, vk) ≥ w(v1, vj) for every j ≤ k, and log n is an
upper bound on the largest height T can have.

Since the cost of the shortest-path tree of G (with v1 as its
root), as computed in the first step of the algorithm, is a lower
bound on the cost of the optimal solution, OPT, we have,

n∑
i=1

w(v1, vi) ≤ OPT. (6)

However, since b(v) = 3, T has �n
2 � leaves and the shortest

path from each leaf is no less than w(v1, vk), we have
⌈n

2

⌉
w(v1, vk) ≤ OPT. (7)

Finally, combining the above discussion gives
n∑

i=1

d(vi) ≤
n∑

i=1

(
w(v1, vi) + 2 log n · w(v1, vk)

)
(8)

≤ OPT + 4 log n · OPT (9)

= O(log n) · OPT. (10)

When designing approximation algorithms one might be
interested in improving the performance guarantee of the
suggested algorithm. We next show that the O(log n)-factor
of Algorithm A′ is tight, as follows by the next example.

Consider a complete graph corresponding to a set of points
on the real line (Figure 4). The points are divided into groups
{Gi}i≥0 as follows: G0 contains only the origin, G1 contains
2 points at distance 1 and 1 + ε from the origin, on the right-
side. G2 contains 4 points at distances 1+2ε, 1+3ε, 1+4ε, and
1+5ε from the origin, on the left-side. In general, Gi contains
2i points at distances {1+(2i−2)ε, . . . , 1+(2i+1−3)ε} from
the origin, taking from the left (right) side if i is odd (even).

Since distances are computed on the real line, the weights
clearly satisfy triangle inequality, and the costs of a shortest-
path on the constructed tree are preserved and not affected by
the number of edges on the path. Taking ε = 1/n ensures that
the solution obtained by the algorithm is of cost Θ(n log n)
(Figure 4(b)). However, the optimal solution of BDRT for this
instance is of cost Θ(2n), as shown in Figure 4(a). This shows
that the performance guarantee of Algorithm A′ is tight.

B. Heuristic algorithms

In this section we concentrate on a family of greedy heuris-
tics for solving BDRT. This is perhaps the most common
approach taken in practice. Since heuristics work well on
many instances, though not on all of them, they cannot
be rigourously analyzed. However, the heuristics presented
here are based on insights obtained from our O(log n)-
approximation algorithm studied in the previous section.

The following algorithms work in a similar way: They start
at the root vertex r, pick the best b(r) vertices as its children,
from the left most child to the rightmost one, and then move
to the next level in the constructed tree. For every vertex v
( 	= r), the algorithm picks the best b(v)− 1 unpicked vertices
and assign them as its children, until spanning all the vertices
of G. By “best” we mean the most preferred vertices according
to a given criterion. We note that ties are broken arbitrarily.

The first greedy algorithm, called GA1, picks the vertices
v in an increasing order of their ratio dT (r, v)/b(v), where
dT (r, v) is the cost of the shortest-path connecting v to r in
the constructed tree T . Although this algorithm might seem
as the most natural one, its performance guarantee can be bad
as Ω(n) as described in the following example.
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Observation 4: There exist instances of the metric version
of BDRT for which the cost of the solution, produced by GA1,
is within a factor of Ω(n) of the optimum, where b(v) ≥ 3
for all vertices v.

Proof: Consider a set of n + 4 nodes given on the real
line with the origin as the root (Figure 5). In this example, a
set of nodes V = {v1, . . . , vn} is located at distance of 3 from
the origin and a set U = {u1, u2, u3} is located at distance n

2 .
Each node v ∈ V ∪ {0} has a degree constraint of b(v) = 3
while nodes in U have degree constraints of n.

It is not hard to verify that the optimal solution for this
instance has a cost of O(n) while GA1 builds a tree of
cost O(n2).

The second algorithm, called GA2, is very similar to GA1

but here vertices are picked in an increasing order of their ratio
dT (r, v)/(b(v))2. This algorithm emphasizes the importance
of the degree bound in particular for those vertices with the
same dT (r, v)/b(v)-ratio.

The third algorithm, GA3, picks the vertices v in an
increasing order of their ratio w(u, v)/b(v). Given a partially
constructed tree, we denote u as the last vertex that is already
picked and joined to the tree. So, we are now ready to assign
u up to b(u)−1 children. This algorithm, as opposed to GA1,
selects the vertices v that are most closely to u in G having the
largest degree constraints b(v). Notice that both GA2 and GA3

also have the same worse performance guarantee; this can be
shown in a similar way as done for GA1 (Observation 4).

We label our approximation algorithm, A′, as GA4 and
denote the following similar version of it as GA5. This
algorithm picks the vertices vi in an increasing order of their
ratio vi/b(vi), where vi, i = 1, . . . , n, is the ith vertex closest

2

n0 

 uuu ,,
n

vv ,...,

Fig. 5. A bad example for GA1

to the root in the input graph G. In other words, {vi}ni=1 are
the vertices ordered as in the first phase of Algorithm A′.

A sample execution

A sample execution of the above five algorithms for BDRT
is described in Figure 6. The input is a complete graph G on
7 vertices, given by the adjacency matrix below. The root is
chosen to be vertex a and the degree bounds are defined as
b(b) = b(g) = 2, while other vertices have a degree bound
of 3.

a b c d e f g
a 0 3 3 7 6 3 3
b 3 0 2 5 4 2 1
c 3 2 0 5 5 1 3
d 7 5 5 0 2 5 5
e 6 4 5 2 0 4 4
f 3 2 1 5 4 0 3
g 3 1 3 5 4 3 0

In this example, the solutions produced by algorithms GA1,
GA2, and GA5 have a cost of 31 (Parts (a), (b), and (e),
respectively), algorithm GA3 achieves a cost of 30 (Part (c)),
and algorithm GA4, which is the approximation algorithm,
produces a solution of cost 29 (Part (d)). Notice that the
theoretical lower bound in this case, namely the cost of the
shortest-path tree of G, rooted at vertex a, is 25 (Part (f)).

IV. EXTENSIONS

In this section we extend our model to be more sensitive
to traffic requirements of the different base stations. Notice
that 4G networks will use a variety of technologies and it is
very likely that some cells would support a large area and a
large density of traffic, while other cells may be designed for
very small traffic densities. Given an instance of BDRT, we
assume now that each base station i ∈ I has traffic requirement
ti, representing its expected traffic load. Since a base station
is connected to the RNC via a path of base stations, its traffic
is aggregated along that path. The routing cost of the path
connecting base station i to the RNC r in the tree T is defined
to be ti · dT (r, i). The generalized bounded-degree minimum
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Fig. 6. Sample execution of the five algorithms. Solutions produced by
GA1 , GA2, and GA5 have a cost of 31 (Parts (a), (b), and (e), respectively),
GA3 achieve a solution of cost of 30 (Part (c)), and GA4, which is the
approximation algorithm, produce a solution of cost 29 (Part (d)). The cost
of the shortest-path tree of G, rooted at vertex a, is 25 (Part (f)).

routing cost spanning tree problem (GBDRT) is to find a
spanning tree, rooted at a given root r, that meets the degree
constraints b(v), for all v ∈ V and the cost

∑
i∈I

ti · dT (r, i) (11)

is minimized.

Obviously, BDRT is a special case of GBDRT, by taking
ti = 1, for all i ∈ I . Moreover, our approximation algorithm,
A′, when applied to an instance of GBDRT, gives the same
performance guarantee. Notice that the lower bound in this
case is the star, centered at the root vertex, computed via (11).
Hence we have the following:

Theorem 5: The metric generalized bounded-degree min-
imum routing cost spanning tree problem (GBDRT) with
b(v) ≥ 3, for all v ∈ V , is approximable within a factor
of O(log n) of the optimum.

A similar generalization can also be applied to the heuristic
algorithms described in Section III-B. In this case the greedy
algorithms decrease their criteria for a selection of vertex v
by a factor of tv, where v is a vertex corresponds to a base
station v and tv is its traffic requirement.

V. SIMULATION RESULTS

In Section III, we defined five algorithmic solutions for both
BDRT and its generalization GBDRT. The first method was
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Fig. 7. Uniform case simulation of BDRT

our approximation algorithm (Section III-A), and the other
four are heuristics (Section III-B). In order to determine a
good approach for solving BDRT and GBDRT in practice, we
conducted two separate sets of simulations to test BDRT and
GBDRT. In addition, a set of simulation testing the distance
from the star lower bound using uniform weights.

A. Methodology

Each set of simulations was ran on a random complete graph
on n vertices (n = 10, 20, . . . , 200) where the (integer) degree
bounds were selected uniformly at random between 3 and 8.

When simulating BDRT and GBDRT, edge weights are
sampled from a n × n-square given in the Euclidean plain.
Each of the five algorithms was executed 1500 times, and the
average cost as well as the standard deviation values were
recorded. In the case of GBDRT, traffic loads are uniformly
taken from the set {1, 2, 4, 8, . . . , 128}.

Figure 7 describes the results for the uniform case of BDRT.
The results indicate that the optimal solutions, produced by
algorithms GA1, GA2, GA3, and GA5, are of cost within a
factor of 3.4 from the lower bound. However, GA4 was far
from the optimal solution by at most 23% (in the case of
n = 80).

B. Results

It is not hard to verify that in the uniform case (Figure 7),
algorithms GA1, GA2, GA3, and GA5 are the same. Con-
sider the greedy algorithm that picks the vertices of G in a
decreasing order of their degree bounds. Clearly, changing
the position of a vertex will not decrease the height of
the vertex and hence the total cost of the tree will not be
smaller. Assume, for example, that a vertex of level h in
the constructed tree is considered to be selected by these
algorithms. Since all candidates examined both by GA1 and
GA2 are of length h from the root, the chosen vertex will be
the one with the highest degree constraint. Now, since edge-
weights are uniform, Algorithm GA3 will pick the highest
degree-constrained vertex as well. Finally, all the vertices in
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Fig. 8. BDRT simulation

the shortest-path tree of the input graph are of the same
distance from the root and therefore, the vertex of highest
degree-constraint will be selected also by Algorithm GA5.
However, Algorithm GA4 does not involve degree-constraints
in its selection criteria hence it yields a different solution.

Figure 8 summarizes the results for BDRT. In this case
algorithms GA1 and GA3 performed better than their coun-
terparts. These algorithms achieve solutions that are within a
factor of 1.28 from the lower bound. However, all five algo-
rithms reached average costs of up to a factor of 1.49 of the
lower bound, significantly far from the worst-case O(log n)-
factor. Standard deviation of the runs of these algorithms were
between 0.14 to 0.28 for small sized graphs (Table I).

Notice that the performance of BDRT simulations (Fig-
ure 8) outperform the results of the uniform case (Figure 7)
by a factor of 2.7 as in the case of GA3. The main reason
for this interesting behavior is that when a vertex is placed
further down in the tree its distance to the root increases. In

TABLE I

ALGORITHMS FOR SOLVING BDRT

n GA1 GA2 GA3 GA4 GA5

10 1.182 (0.26) 1.215 (0.28) 1.182 (0.26) 1.168 (0.25) 1.184 (0.26)
20 1.231 (0.21) 1.281 (0.22) 1.227 (0.21) 1.239 (0.20) 1.255 (0.21)
30 1.254 (0.19) 1.304 (0.20) 1.243 (0.19) 1.305 (0.19) 1.310 (0.19)
40 1.281 (0.18) 1.342 (0.20) 1.267 (0.18) 1.344 (0.18) 1.356 (0.19)
50 1.290 (0.18) 1.360 (0.20) 1.277 (0.18) 1.370 (0.18) 1.379 (0.18)
60 1.294 (0.17) 1.368 (0.19) 1.279 (0.17) 1.387 (0.17) 1.398 (0.17)
70 1.302 (0.16) 1.378 (0.18) 1.287 (0.16) 1.411 (0.16) 1.426 (0.16)
80 1.289 (0.16) 1.359 (0.17) 1.273 (0.16) 1.404 (0.15) 1.418 (0.16)
90 1.286 (0.16) 1.356 (0.17) 1.272 (0.16) 1.414 (0.15) 1.425 (0.15)

100 1.287 (0.16) 1.354 (0.16) 1.273 (0.16) 1.423 (0.15) 1.433 (0.15)
110 1.287 (0.15) 1.357 (0.16) 1.272 (0.16) 1.439 (0.15) 1.445 (0.15)
120 1.282 (0.15) 1.350 (0.16) 1.269 (0.16) 1.446 (0.15) 1.450 (0.15)
130 1.274 (0.15) 1.340 (0.15) 1.261 (0.15) 1.443 (0.14) 1.444 (0.14)
140 1.279 (0.15) 1.344 (0.15) 1.267 (0.16) 1.460 (0.14) 1.460 (0.14)
150 1.280 (0.15) 1.341 (0.15) 1.267 (0.16) 1.465 (0.15) 1.467 (0.14)
160 1.283 (0.15) 1.342 (0.15) 1.269 (0.16) 1.478 (0.14) 1.479 (0.14)
170 1.276 (0.15) 1.337 (0.15) 1.264 (0.15) 1.473 (0.14) 1.475 (0.14)
180 1.283 (0.15) 1.388 (0.15) 1.271 (0.15) 1.481 (0.14) 1.484 (0.13)
190 1.281 (0.15) 1.339 (0.15) 1.270 (0.16) 1.487 (0.14) 1.491 (0.14)
200 1.284 (0.15) 1.341 (0.15) 1.273 (0.16) 1.493 (0.14) 1.489 (0.14)
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Fig. 9. GBDRT simulation

the non-uniform cases vertices in these positions would have
lower weights and thus less effects on the overall cost.

Figure 9 summarizes the results for GBDRT. In this case,
algorithms GA1, GA2, GA3, and GA5 achieve solutions that
are within a factor of 1.67 from the lower bound (GA3

has reached a factor of only 1.33). Algorithm GA4 was far
approximately 2.7 times the lower bound. Standard deviation
of the runs of GA3 were between 0.56 to 0.22 (Table II).

In addition, the worst-case running time of the algorithms,
for all cases, was approximately 2 seconds for the case of
n = 200, on a Pentium M machine, 1.4 GHz, and 256 Mb of
RAM.

VI. CONCLUSIONS AND OPEN PROBLEMS

Planning radio access networks for 4G cellular systems
requires a replacement of the commonly used star based
architecture (in which an RNC is connected to a set of base
stations via direct links) with a new tree-topology structure.

TABLE II

ALGORITHMS FOR SOLVING GBDRT

n GA1 GA2 GA3 GA4 GA5

10 1.082 (0.56) 1.089 (0.57) 1.081 (0.56) 1.652 (0.87) 1.083 (0.56)
20 1.198 (0.45) 1.216 (0.47) 1.189 (0.45) 1.931 (0.73) 1.206 (0.46)
30 1.272 (0.41) 1.297 (0.42) 1.252 (0.40) 2.213 (0.71) 1.294 (0.41)
40 1.312 (0.36) 1.341 (0.37) 1.279 (0.35) 2.265 (0.64) 1.351 (0.37)
50 1.354 (0.33) 1.379 (0.34) 1.304 (0.32) 2.324 (0.58) 1.408 (0.35)
60 1.376 (0.31) 1.412 (0.33) 1.313 (0.30) 2.386 (0.57) 1.443 (0.33)
70 1.395 (0.30) 1.424 (0.31) 1.320 (0.29) 2.412 (0.52) 1.476 (0.31)
80 1.416 (0.29) 1.455 (0.31) 1.330 (0.27) 2.497 (0.53) 1.512 (0.31)
90 1.416 (0.27) 1.453 (0.29) 1.324 (0.26) 2.519 (0.50) 1.518 (0.29)

100 1.433 (0.27) 1.474 (0.29) 1.332 (0.25) 2.588 (0.48) 1.549 (0.28)
110 1.432 (0.25) 1.473 (0.26) 1.328 (0.23) 2.601 (0.46) 1.558 (0.26)
120 1.441 (0.26) 1.484 (0.27) 1.330 (0.23) 2.594 (0.44) 1.584 (0.27)
130 1.450 (0.25) 1.498 (0.26) 1.333 (0.23) 2.639 (0.44) 1.607 (0.27)
140 1.444 (0.24) 1.484 (0.26) 1.325 (0.22) 2.633 (0.42) 1.601 (0.26)
150 1.449 (0.24) 1.494 (0.25) 1.326 (0.22) 2.659 (0.42) 1.619 (0.26)
160 1.443 (0.23) 1.486 (0.24) 1.319 (0.21) 2.653 (0.42) 1.615 (0.25)
170 1.450 (0.23) 1.496 (0.24) 1.321 (0.21) 2.663 (0.39) 1.634 (0.24)
180 1.468 (0.23) 1.506 (0.24) 1.332 (0.21) 2.696 (0.41) 1.665 (0.25)
190 1.459 (0.23) 1.505 (0.24) 1.326 (0.21) 2.709 (0.39) 1.663 (0.24)
200 1.464 (0.22) 1.507 (0.22) 1.328 (0.20) 2.686 (0.38) 1.669 (0.23)



In the new architecture a base station can be connected to an
RNC via other base stations, resulting in a complex network
design problem.

We studied five algorithms for solving the metric version of
BDRT. These methods involve both an approximation algo-
rithm and a family of greedy heuristics. Our results indicate
that a combination4 of a greedy heuristic (GA3), that picks the
vertices v in an increasing order of their ratio w(u, v)/b(v) and
our O(log n)-approximation algorithm generates a solution,
which produces a close-to-optimal result in practical scenarios
with a guaranteed worst case bound. Moreover, this solution
can be efficiently computed for networks of large size.

Finally, two open problems are of special interest:

1) Is there a better lower bound than the shortest-path tree
of the input graph? This might be a crucial challenging
question towards improving the approximation factor
for the metric version of BDRT. Notice that such an
approximation algorithm cannot be achieved if the lower
bound is indeed the cost of the shortest-path tree of
the input graph. To see this consider the uniform edge-
weights instance when all vertices have degree bound
of 3. The optimal solution is a tree of cost O(n log n)
while the shortest-path tree has cost of n− 1.

2) As we described in this paper, when designing tree-
topology radio access networks, the communication be-
tween base stations and RNCs causes a certain amount
of delay in communication. In order to reduce this delay,
the longest path between a base station to an RNC on
every component should be limited by a given number.
We can define a metric version of BDRT together with
a depth constraint as the generalized version of BDRT.
How well can this generalization be approximated?
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